Bayesian panel smooth transition model with spatial correlation
نویسندگان
چکیده
منابع مشابه
Spatial Correlation Testing for Errors in Panel Data Regression Model
To investigate the spatial error correlation in panel regression models, various statistical hypothesizes and testings have been proposed. This paper, within introduction to spatial panel data regression model, existence of spatial error correlation and random effects is investigated by a joint Lagrange Multiplier test, which simultaneously tests their existence. For this purpose, joint Lagrang...
متن کاملBayesian Analysis of Survival Data with Spatial Correlation
Often in practice the data on the mortality of a living unit correlation is due to the location of the observations in the study. One of the most important issues in the analysis of survival data with spatial dependence, is estimation of the parameters and prediction of the unknown values in known sites based on observations vector. In this paper to analyze this type of survival, Cox...
متن کاملPrediction in the Panel Data Model with Spatial Correlation
This paper considers the problem of prediction in a panel data regression model with spatial autocorrelation. In particular, we consider a simple demand equation for cigarettes based on a panel of 46 states over the period 1963-1992. The spatial autocorrelation due to neighboring states and the individual heterogeneity across states is taken explicitly into account. We derive the best linear un...
متن کاملTesting Panel Data Regression Models with Spatial Error Correlation*
This paper derives several Lagrange Multiplier tests for the panel data regression model wih spatial error correlation. These tests draw upon two strands of earlier work. The Þrst is the LM tests for the spatial error correlation model discussed in Anselin (1988, 1999) and Anselin, Bera, Florax and Yoon (1996), and the second is the LM tests for the error component panel data model discussed in...
متن کاملDynamic Bayesian smooth transition autoregressive models
In this paper we propose the Gaussian Dynamic Bayesian Smooth Transition Autoregressive (DBSTAR) models for nonlinear autoregressive time series processes as alternative to both the classical Smooth Transition Autoregressive (STAR) models of Chan and Tong (1986) and the computational Bayesian STAR (CBSTAR) models of Lopes and Salazar (2005). The DBSTAR models are autoregressive formulations of ...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: PLOS ONE
سال: 2019
ISSN: 1932-6203
DOI: 10.1371/journal.pone.0211467